Bienvenidos al sitio web de operaciones unitarias este sitio les facilitará los primeros pasos en lo que significa los procesos industriales.

Espero que este sitio cumpla sus expectativas.



martes, 31 de agosto de 2010

FILTRACION

La filtración como Operación Unitaria usada industrialmente tiene varios tipos o clasificación dependiendo de lo que se esta separando. Existen la filtración por clarificación, la filtración por torta y las microfiltraciones y ultrafiltraciones. La filtración por torta es la que este trabajo abarca, resaltándose su concepto y diferenciándola de los otros tipos. Se especifica la forma de cómo se dan estas filtraciones por torta en los equipos que son filtración a Presión Constante y Filtración a Velocidad constante formulando para cada una las ecuaciones matemáticas a utilizar en el cálculo de sus parámetros de diseño. Asimismo, se explica la metodología para la realización de los problemas de filtración por torta.

Introducción

En los diferentes procesos de producción de alimentos, se presenta la necesidad de separar los componentes de una mezcla en fracciones, para de esta manera poder describir los sólidos divididos y predecir sus características. Dentro del amplio campo de las separaciones existen dos grandes grupos: (a) El grupo de las separaciones difusionales que son realizadas con cambios de fases y transporte de materia de una fase a otra y (b) los métodos correspondientes a las separaciones mecánicas la cual comprende filtración, sedimentación, centrifugación y tamizado.

Estas separaciones son aplicables a mezclas heterogéneas y no a homogéneas y la forma de separación depende de la naturaleza de la partícula que vaya a ser separada y de las fuerzas que actúan sobre ella para separarlas. Las características de las partículas más importantes a tener en cuenta son el tamaño, la forma y la densidad, y en el caso de fluidos, la viscosidad y la densidad, aplicables en separaciones de: sólidos de gases, gotas de líquidos de gases, sólidos de sólidos y sólidos de líquidos. El comportamiento de los diferentes componentes a las fuerzas establece el movimiento relativo entre el fluido y las partículas, y entre las partículas de diferente naturaleza. Debido a estos movimientos relativos, las partículas y el fluido se acumulan en distintas regiones y pueden separase y recogerse, por ejemplo en la torta y en el tanque de filtrado de un filtro prensa.

Definición

La filtración es la operación Unitaria en la que el componente sólido insoluble de una suspensión sólido-líquido se separa del componente líquido haciendo pasar este último a través de una membrana porosa la cual retiene a los sólidos en su superficie (filtración de torta) o en su interior (Clarificación), gracias a una diferencia de presión existente entre un lado y el otro de dicha membrana. A la suspensión de sólidos en líquidos se conoce como papilla de alimentación o simplemente suspensión, al líquido que pasa a través de la membrana se conoce como filtrado, la membrana es conocida como medio filtrante y a los sólidos separados se conocen como torta de filtración. Como fue dicho, el fluido circula a través del medio filtrante en virtud de una diferencia de presión, existiendo los filtros que trabajan con sobrepresión aguas arriba, presión atmosférica aguas arriba y los que trabajan al vacío aguas abajo.

La teoría de filtración es valiosa para interpretar análisis de laboratorios, buscar condiciones óptimas de filtración y predecir los efectos de los cambios en las condiciones operacionales. El empleo de esta teoría esta limitado por el hecho de que las características de filtración se deben determinar siempre en la lechada real de que se trate, puesto que los datos obtenidos con una lechada no son aplicables a otra. Al comparar la filtración a nivel industrial ésta difiere de la del laboratorio en el volumen de material manejado y en la necesidad de manejarlo a bajo costo. Para obtener un gasto razonable con un filtro de tamaño moderado, se puede incrementar la caída de presión del flujo o disminuir la resistencia del mismo. Para reducir la resistencia al flujo el área de filtrado se hace tan grande como sea posible, sin aumentar el tamaño total del equipo o aparato de filtración. La selección del equipo de filtrado depende en gran medida de la economía.

Las aplicaciones de la filtración en la industria alimenticia se pueden considerar en tres categorías. La primera incluye todas las aplicaciones en las que la suspensión que contiene grandes cantidades de sólidos insolubles se separan en los sólidos y líquidos que la componen, formándose una torta en la parte anterior del medio conociéndose el proceso como filtración por torta o de torta. La segunda categoría se denomina clarificación y en esta se quitan pequeñas cantidades de un sólido insoluble a un líquido valioso donde el propósito es generalmente producir un líquido claro. La tercera se denomina micro-filtración donde se separan partículas muy finas por lo general microorganismos de los alimentos.

Aparatos utilizados en filtración

Los aparatos que se utilizan en filtración, constan básicamente de un soporte mecánico, conductos por los que entra y sale la dispersión y dispositivos para extraer la torta. La presión se puede proporcionar en la parte inicial del proceso, antes del filtro o bien se puede utilizar vacío después del filtro, o ambas a la vez, de forma que el fluido pase a través del sistema.

La mayoría de los filtros industriales operan a vacío o a presión superior a la atmosférica. También son continuos o discontinuos, dependiendo de que la descarga de los sólidos sea continua o intermitente. Durante gran parte del ciclo de operación de un filtro discontinuo el flujo de líquido a través del aparato es continuo, pero debe interrumpirse periódicamente para permitir la descarga de los sólidos acumulados. En un filtro continuo, tanto la descarga de los sólidos como del líquido es ininterrumpida cuando el aparato está en operación.

Entre los aparatos se cuentan:

1.- Filtros prensa (discontinuo de presión)

En estos se coloca una tela o una malla sobre placas verticales, de manera tal que sean los bordes los que soporten a la tela y al mismo tiempo dejen debajo de la tela un área libre lo más grande posible para que pase el filtrado. Normalmente se les llama "Filtros de placa y marco". En esta clase de filtros se alternan placas acanaladas cubiertas en ambos lados por medio filtrante, con marcos, en conjunto se encuentran apretada por tornillos o una prensa hidráulica que la cierran herméticamente.

Las placas y los marcos contienen aberturas en un ángulo, las cuales forman un canal al cerrar el filtro y por donde se introduce la papilla de alimentación. Al circular la suspensión, la torta se forma en el lado más alejado de la placa, entrando por el marco, pasando el filtrado a través del medio y por la superficie acanalada de las placas del filtro y saliendo por un canal de salida en cada placa.

La filtración se continua hasta que el flujo de filtrado es menor que cierto límite practico o la presión alcance un nivel inaceptablemente elevado.

Después de la filtración se puede realizar el lavado de la torta sustituyendo el flujo de la papilla por flujo de lavado, también se puede abrir el filtro y retirar la torta.

2.- Filtros espesadores de presión (continuos de presión)

El objeto de un filtro espesador es separar parte del líquido contenido en una suspensión diluida para obtener otra concentrada. Tiene la apariencia de un filtro de prensa, sin embargo, no contiene marco y las placas están modificadas. Las placas sucesivas llevan canales apareados que forman, cuando se monta la prensa, una conducción larga en espiral para la suspensión. Los lados de los canales están recubiertas con un medio filtrante mantenido entre las placas. Mientras la suspensión pasa por el canal a presión, una parte del fluido sigue fluyendo por el canal hacia al distribuidor múltiple de descarga de líquido claro. La suspensión espesada se mantiene en movimiento rápido para no obstruir el canal. El número de placas escogido es tal de modo que la diferencia de presión en todo el aparato no exceda de 6 kgf /cm2. En estas condiciones es posible duplicar la concentración de la suspensión de entrada. Si se requiere una concentración mayor, la suspensión espesada en un filtro se introduce nuevamente en un segundo filtro.

3.- Filtros rotatorios (continuo de vacío)

En este tipo de filtros, el flujo pasa a través de una tela cilíndrica rotatoria, de la que se puede retirar la torta de forma continua. La fuerza más común aplicada es la de vacío. En estos sistemas, la tela se soporta sobre la periferia de un tambor sobre los que se está formando la torta.

Cabe destacar que los filtros anteriormente vistos son a modo de ejemplo destacando el filtro de prensa, el cual fue usado en el laboratorio. Se pueden encontrar una variedad muy amplia de estos en el comercio dependiendo de la finalidad del proceso a realizar.


Medio filtrante

El medio filtrante puede consistir en tela, papel o material poroso o tejido cuya función es promover la formación de una torta de sólidos. Un medio filtrante debe cumplir con los siguientes requerimientos:


1.Tener facilidad para remover la fase sólida dando un filtrado claro.

2. Debe ofrecer la mínima resistencia al flujo para la rápida formación de la torta de filtración.

3. Tener resistencia a las condiciones del proceso, es decir, ser lo suficientemente fuerte para soportar la torta y aguantar bajo condiciones extremas del proceso.

4. No debe obstruirse o sesgarse, es decir, tener alto rendimiento del liquido para un ΔP dado.

5. Debe ser químicamente inerte y no tóxico.

6. Debe permitir facilidad del retiro de la torta limpia y completa.

7. No ser excesivamente caro.

Filtros Rotatorios

Estos son filtros que trabajan a presión constante de vacío y de forma continua. En este tipo de filtros, el flujo pasa a través de una tela cilíndrica rotatoria, de la que se puede retirar la torta. En estos sistemas, la tela se soporta sobre la periferia de un tambor sobre los que se está formando la torta.

Para este tipo de filtro la Resistencia del medio es considerada despreciable (Rm≈0) y estos están conformados por 5 zonas bien especificadas:

1. Zona de filtración: parte sumergida del filtro.

2. Zona de escurrido: se le separa el exceso de aguas madres por vacío.

3. Zona de lavado: se limpia con agua (chorros), para eliminar por completo las aguas madres.

4. Zona de Secado: se seca casi en su totalidad por vacío a la torta formada.

5. Zona de raspado: se le retira a través de una cuchilla, la torta formada durante la filtración.

Luego de cumplir el ciclo el filtro rotatorio vuelve de nuevo a comenzar su filtración .

Selección de los Equipos de Filtración

Esta selección depende considerablemente de los factores económicos, pero esto variará dependiendo de:

a. La viscosidad del fluido, densidad y reactividad química.

b. Tamaño de las partículas sólidas, distribución de tamaños, forma, tendencias a la floculación y deformabilidad.

c. Concentración de la pasta alimentada.

d. Cantidad del material que va a ser manejada.

e. Valores absolutos y relativos de los productos líquido y sólido.

f. Que tan completa se requiere la separación.

g. Gastos relativos de mano de obra, capital y fuerza motriz.

Metodología para la resolución de problemas de Filtración.

1. Generalmente los problemas de filtración muestran dos partes en el planteamiento. Una parte es la experimental, donde se han realizado experiencias en laboratorio con la suspensión que se usará en la real, tratando de simular el proceso y, la otra parte, la real donde se encuentra la incógnita a buscar pero que usa la misma suspensión de la experimental.

2. Una vez conocido los datos de ambas partes (real y experimental) se determina que tipo de filtración por torta se está desarrollando para conocer cuales ecuaciones se van a utilizar, teniendo en cuenta que existen tres tipos de ecuaciones la de la presión constante, la de filtro rotatorio y la de velocidad constante.

3. Cuando se tienen todos estos datos y las ecuaciones a utilizar se utiliza la parte experimental para conocer valores de la suspensión y del medio filtrante que se necesitan. Por ejemplo, si es filtración a presión constante de la pendiente Kp se despejan los valores de a ,.C,.m , gc (en conjunto) que permanecerán constantes entre el experimental y el real ya que la suspensión no cambia y del punto de corte el valor de Rm de ser necesario. Si es a velocidad constante, del valor de la pendiente se obtiene s y del punto de corte Kr se obtiene en conjunto los valores de a o,.C,.m , gc. Si se trabaja con filtro rotatorio, normalmente, el experimental es a presión constante y los valores despejados se utilizan en el real.

4. Como recomendación en este tipo de ejercicio las unidades con las que se trabaja deben estar en un solo sistemas de unidades, por lo que tienen que ser transformadas al inicio de la operación.

DESTILACION

La destilación es un proceso que consiste separar los distintos componentes de una mezcla mediante el calor. Para ello que se calienta esa sustancia, normalmente en estado líquido, para que sus componentes más volátiles pasen a estado gaseoso o de vapor y a continuación volver esos componentes al estado líquido mediante condensación por enfriamiento.

El principal objetivo de la destilación es separar los distintos componentes de una mezcla aprovechando para ello sus distintos grados de volatilidad. Otra función de la destilación es separar los elementos volátiles de los no volátiles de una mezcla.

En otros sistemas similares como la evaporación o el secado, normalmente el objetivo es obtener el componente menos volátil; el componente más volátil, casi siempre agua, se desecha. Sin embargo, la finalidad principal de la destilación es obtener el componente más volátil en forma pura. Por ejemplo, la eliminación del agua de la glicerina evaporando el agua, se llama evaporación, pero la eliminación del agua del alcohol evaporando el alcohol recibe el nombre de destilación, aunque se usan mecanismos similares en ambos casos.

Si la diferencia entre las temperaturas de ebullición o volatilidad de las sustancias es grande, se puede realizar fácilmente la separación completa en una sola destilación. Es el caso de la obtención de agua destilada a partir de agua marina. Esta contiene aproximadamente el 4% de distintas materias sólidas en disolución.

En ocasiones, los puntos de ebullición de todos o algunos de los componentes de una mezcla difieren en poco entre sí por lo que no es posible obtener la separación completa en una sola operación de destilación por lo que se suelen realizar dos o más. Así el ejemplo del alcohol etílico y el agua. El primero tiene un punto de ebullición de 78,5 °C y el agua de 100 °C por lo que al hervir esta mezcla se producen unos vapores con ambas sustancias aunque diferentes concentraciones y más ricos en alcohol. Para conseguir alcohol industrial o vodka es preciso realizar varias destilaciones.

Teoría de la destilación

En la mezcla simple de dos líquidos solubles entre sí, la volatilidad de cada uno es perturbada por la presencia del otro. En este caso, el punto de ebullición de una mezcla al 50%, por ejemplo, estaría a mitad de camino entre los puntos de ebullición de las sustancias puras, y el grado de separación producido por una destilación individual dependería solamente de la presión de vapor, o volatilidad de los componentes separados a esa temperatura. Esta sencilla relación fue anunciada por vez primera por el químico francés François Marie Raoult (1830-1901) y se llama ley de Raoult. Esta ley sólo se aplica a mezclas de líquidos muy similares en su estructura química, como el benceno y el tolueno. En la mayoría de los casos se producen amplias desviaciones de esta ley. Si un componente sólo es ligeramente soluble en el otro, su volatilidad aumenta anormalmente. En el ejemplo anterior, la volatilidad del alcohol en disolución acuosa diluida es varias veces mayor que la predicha por la ley de Raoult. En disoluciones de alcohol muy concentradas, la desviación es aún mayor: la destilación de alcohol de 99% produce un vapor de menos de 99% de alcohol. Por esta razón el alcohol no puede ser concentrado por destilación más de un 97%, aunque se realice un número infinito de destilaciones.

Aparato de destilación

Técnicamente el término alambique se aplica al recipiente en el que se hierven los líquidos durante la destilación, pero a veces se aplica al aparato entero, incluyendo la columna fraccionadora, el condensador y el receptor en el que se recoge el destilado. Este término se extiende también a los aparatos de destilación destructiva o craqueo. Los alambiques para trabajar en el laboratorio están hechos normalmente de vidrio, pero los industriales suelen ser de hierro o acero. En los casos en los que el hierro podría contaminar el producto se usa a menudo el cobre. A veces también se usa el término retorta para designar a los alambiques.

TIPOS DE DESTILACIÓN

• Destilación simple

Es el método que se usa para la separación de líquidos con punto de ebullición inferior a 150ºC a presión atmosférica de impurezas no volátiles o de otros líquidos miscibles que presenten un punto de ebullición al menos 25ºC superior al primero de ellos. Es importante que la ebullición de la mezcla sea homogénea y no se produzcan proyecciones. Para evitar estas proyecciones suele introducirse en el interior del aparato de destilación nódulos de materia que no reaccione con los componentes. Normalmente se suelen utilizar pequeñas bolas de vidrio.

Destilación fraccionada

La destilación fraccionada es un proceso de destilación de mezclas muy complejas y con componentes de similar volatilidad. Consiste en que una parte del destilado vuelve del condensador y gotea por una larga columna a una serie de placas, y que al mismo tiempo el vapor que se dirige al condensador hace burbujear al líquido de esas placas. De esta forma, el vapor y el líquido interaccionan de forma que parte del agua del vapor se condensa y parte del alcohol del líquido se evapora. Así pues, la interacción en cada placa es equivalente a una redestilación, y si se construye una columna con el suficiente número de placas, se puede obtener un producto destilado del altísima pureza, como el alcohol de 96%; en una única destilación. Además, introduciendo gradualmente la disolución original de baja concentración del componente a destilar en un punto en mitad de la columna, se podrá separar prácticamente todo este componente del disolvente mientras desciende hasta la placa inferior, de forma que no se desperdicie nada del componente a destilar.

Este proceso se utiliza mucho en la industria, no sólo para mezclas simples de dos componentes, como alcohol y agua en los productos de fermentación, u oxígeno y nitrógeno en el aire líquido, sino también para mezclas más complejas como las que se encuentran en el alquitrán de hulla y en el petróleo. La columna fraccionadora que se usa con más frecuencia es la llamada torre de burbujeo, en la que las placas están dispuestas horizontalmente, separadas unos centímetros, y los vapores ascendentes suben por unas cápsulas de burbujeo a cada placa, donde burbujean a través del líquido. Las placas están escalonadas de forma que el líquido fluye de izquierda a derecha en una placa, luego cae a la placa de abajo y allí fluye de derecha a izquierda. La interacción entre el líquido y el vapor puede ser incompleta debido a que puede producirse espuma y arrastre de forma que parte del líquido sea transportado por el vapor a la placa superior. En este caso, pueden ser necesarias cinco placas para hacer el trabajo de cuatro placas teóricas, que realizan cuatro destilaciones. Un equivalente barato de la torre de burbujeo es la llamada columna apilada, en la que el líquido fluye hacia abajo sobre una pila de anillos de barro o trocitos de tuberías de vidrio.

La única desventaja de la destilación fraccionada es que una gran parte, aproximadamente el 50%, del destilado condensado debe volver a la parte superior de la torre y eventualmente debe hervirse otra vez, con lo cual hay que suministrar más energía en forma de calor. Por otra parte, el funcionamiento continuo permite grandes ahorros de calor, porque el destilado que sale puede ser utilizado para precalentar la mezcla que entra.

Cuando la mezcla está formada por varios componentes, estos se extraen en distintos puntos a lo largo de la torre. Las torres de destilación industrial para petróleo tienen a menudo 100 placas, con al menos diez fracciones diferentes que son extraídas en los puntos adecuados. Se han utilizado torres de más de 500 placas para separar isótopos por destilación.

Destilación por vapor

Si dos líquidos insolubles se calientan, ninguno de los dos es afectado por la presencia del otro (mientras se les remueva para que el líquido más ligero no forme una capa impenetrable sobre el más pesado) y se evaporan en un grado determinado solamente por su propia volatilidad. Por lo tanto, dicha mezcla siempre hierve a una temperatura menor que la de cada componente por separado. El porcentaje de cada componente en el vapor sólo depende de su presión de vapor a esa temperatura. Este principio puede aplicarse a sustancias que podrían verse perjudicadas por el exceso de calor si fueran destiladas en la forma habitual.

Destilación al vacío

Otro método para destilar sustancias a temperaturas por debajo de su punto normal de ebullición es evacuar parcialmente el alambique. Por ejemplo, la anilina puede ser destilada a 100 °C extrayendo el 93% del aire del alambique. Este método es tan efectivo como la destilación por vapor, pero más caro. Cuanto mayor es el grado de vacío, menor es la temperatura de destilación. Si la destilación se efectúa en un vacío prácticamente perfecto, el proceso se llama destilación molecular. Este proceso se usa normalmente en la industria para purificar vitaminas y otros productos inestables. Se coloca la sustancia en una placa dentro de un espacio evacuado y se calienta. El condensador es una placa fría, colocada tan cerca de la primera como sea posible. La mayoría del material pasa por el espacio entre las dos placas, y por lo tanto se pierde muy poco.

• Destilación molecular centrífuga

Si una columna larga que contiene una mezcla de gases se cierra herméticamente y se coloca en posición vertical, se produce una separación parcial de los gases como resultado de la gravedad. En una centrifugadora de alta velocidad, o en un instrumento llamado vórtice, las fuerzas que separan los componentes más ligeros de los más pesados son miles de veces mayores que las de la gravedad, haciendo la separación más eficaz. Por ejemplo, la separación del hexafluoruro de uranio gaseoso, UF6, en moléculas que contienen dos isótopos diferentes del uranio, uranio 235 y uranio 238, puede ser llevada a cabo por medio de la destilación molecular centrífuga.

• Sublimación

Si se destila una sustancia sólida, pasándola directamente a la fase de vapor y otra vez a la fase sólida sin que se forme un líquido en ningún momento, el proceso se llama sublimación. La sublimación no difiere de la destilación en ningún aspecto importante, excepto en el cuidado especial que se requiere para impedir que el sólido obstruya el aparato utilizado. La rectificación de dichos materiales es imposible. El yodo se purifica por sublimación.

Destilación destructiva

Cuando se calienta una sustancia a una temperatura elevada, descomponiéndose en varios productos valiosos, y esos productos se separan por fraccionamiento en la misma operación, el proceso se llama destilación destructiva. Las aplicaciones más importantes de este proceso son la destilación destructiva del carbón para el coque, el alquitrán, el gas ciudad y el amoníaco, y la destilación destructiva de la madera para el carbón de leña, el ácido etanoico, la propanona y el metanol. Este último proceso ha sido ampliamente desplazado por procedimientos sintéticos para fabricar distintos subproductos. El craqueo del petróleo es similar a la destilación destructiva.

lunes, 30 de agosto de 2010

CRISTALIZACION

Introducción

La cristalización es una operación de transferencia de materia en la que se produce la formación de un sólido (cristal o precipitado) a partir de una fase homogénea (soluto en disolución o en un fundido).
En este capítulo y en los precedentes se han estudiado procesos de separación para sistemas gas-líquido y líquido-líquido. Además, se ha estudiado también el proceso de separación de lixiviación para sistemas sólido-líquido. La cristalización también es un proceso de separación líquido en el que hay transferencia de masa de un soluto de la solución líquida a una fase cristalina sólida pura. Un ejemplo importante es la producción de sacarosa de azúcar de remolacha, donde la sacarosa se cristaliza de una solución acuosa.
Cristalización

La cristalización es una operación de transferencia de materia en la que se produce la formación de un sólido (cristal o precipitado) a partir de una fase homogénea (soluto en disolución o en un fundido).
Destaca sobre otros procesos de separación por su potencial para combinar purificación y producción de partículas en un solo proceso. Comparado con otras operaciones de separación la cristalización en disolución presenta:

Ventajas:
• El factor de separación es elevado (producto casi sin impurezas). En bastantes ocasiones se puede recuperar un producto con una pureza mayor del 99% en una única etapa de cristalización, separación y lavado.

• Controlando las condiciones del proceso se obtiene un producto sólido constituido por partículas discretas de tamaño y forma adecuados para ser directamente empaquetado y vendido (el mercado actual reclama productos con propiedades específicas).

• Precisa menos energía para la separación que la destilación u otros métodos empleados habitualmente y puede realizarse a temperaturas relativamente bajas.

Desventajas:

• En general, ni se puede purificar más de un componente ni recuperar todo el soluto en una única etapa. Es necesario equipo adicional para retirar el soluto restante de las aguas madres.

• La operación implica el manejo de sólidos, con los inconvenientes tecnológicos que esto conlleva. En la práctica supone una secuencia de procesado de sólidos, que incluye equipos de cristalización junto con otros de separación sólido-líquido y de secado (ver esquema general).

La cristalización es una operación de transferencia de materia que depende de la superficie del cristal. En la figura se muestra la compleja interacción entre la distribución de tamaño (CSD) y los factores que lo originan. Cada factor cinético de cristalización está relacionado con los demás, con la velocidad de crecimiento y con el tiempo de residencia de cada partícula (balance de población). Existe una fuerte relación entre la sobresaturación (fuerza impulsora) y el área superficial de los cristales (relacionada con la CSD). Estas interacciones cristalizador/CSD pueden influir profundamente en la operación en estado estacionario de un cristalizador en continuo.

Solubilidad de equilibrio en la cristalización

El equilibrio en la cristalización se alcanza cuando la solución o licor madre está saturado. Esto se representa mediante unacurva de solubilidad. La solubilidad depende principalmente de la temperatura, mientras que la presión tiene un efecto despreciable sobre ella. Los datos se expresan en forma de curvas en las que se grafica la solubilidad en unidades convenientes en función de la temperatura.

Muchos manuales de química incluyen tablas de solubilidad. En la figura 1 se incluyen la curva de solubilidad de algunas sales típicas. En general, la solubilidad de la mayoría de las sales aumenta ligera o notablemente al aumentar la temperatura.

FIGURA (1)  CURVAS DE SOLUBILIDAD


Tipos de geometrías cristalinas


Un cristal se puede definir como un sólido formado por átomos, iones o moléculas, que guardan una distribución ordenada y repetitiva. Es una de las formas de la materia más altamente organizadas. Los átomos, iones o moléculas están situados en redes tridimensionales o cristalinas. Las distancias interatómicas en un cristal entre estos planos imagina- rios o redes cristalinas, así como los ángulos entre estos planos, se miden por medio de difracción de rayos X.

El modelo o distribución de la red cristalina se repite en todas direcciones.
Los cristales se muestran como poliedros de caras planas y vértices agudos. Los tamaños relativos de las caras y de los bordes de diferentes cristales de un mismo material pueden diferir bastante. Sin embargo, los ángulos entre las caras equivalentes de todos los cristales de un mismo material, son siempre iguales y característicos del mismo. De esta forma, los cristales se clasifican con base en los ángulos interfaciales.

Los Siete Sistemas Cristalinos

Existen siete clases de cristales, dependiendo de la distribución de los ejes a los que se refieren los ángulos:



1. Sistema cúbico. Tres ejes iguales que forman ángulos rectos entre sí.
          
2. Sistema tetragonal. Tres ejes que forman ángulos rectos entre sí, con uno de los ejes más largo que los otros dos.

        
3. Sistema ortorrómbico. Tres ejes a ángulos rectos entre sí, todos de tamaño diferente.

  
4. Sistema hexagonal. Tres ejes iguales en un plano formando ángulos de 60” entre sí y un cuarto eje formando un ángulo recto con este plano y ‘no necesariamente de la misma longitud.
         
5. Sistema monoclínico. Tres ejes desiguales, dos a ángulos rectos en un plano y el tercero formando cierto ángulo con dicho plano.




       


6. Sistema triclínico. Tres ejes desiguales que forman ángulos desiguales entre sí que no son de 60” ni de 90”.
    
7. Sistema trigonal. Tres ejes iguales con la misma inclinación.